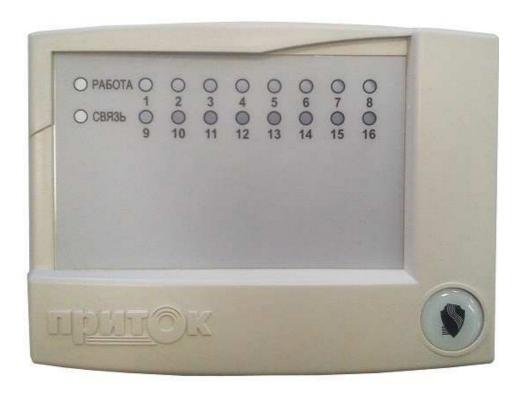
Автоматизированная система охранно-пожарной сигнализации



Сертификат соответствия №С-RU.AБ03.B.00017

Модуль расширения шлейфов Приток-А-МРШ-02 (16) ЛИПГ.425521.012 РЭ Руководство по эксплуатации

Приток-А-МРШ-02 (16) ЛИПГ.425521.012 РЭ СОДЕРЖАНИЕ

ВВЕДЕНИЕ	
1 ОСНОВНЫЕ СВЕДЕНИЯ	4
1.1 Краткое описание	4
1.2 Технические характеристики	5
1.3 Режимы работы индикации	5
1.4 Типы ШС, силовые выходы	6
1.5 Работа с КОП	8
2 МОНТАЖ, ПОДКЛЮЧЕНИЕ И ПРОВЕРКА РАБОТОСПОСОБНОСТИ	10
2.1 Конфигурация	10
2.2 Установка на месте эксплуатации	13
2.3 Проверка работоспособности	14
ПРИЛОЖЕНИЕ. СХЕМЫ ПОДКЛЮЧЕНИЯ	15

ВВЕДЕНИЕ

Настоящее руководство является документом, удостоверяющим основные технические характеристики, принцип работы, правила монтажа и эксплуатации **Модуля** расширения шлейфов Приток-А-МРШ-02 (16) ЛИПГ.425521.012 (далее – МРШ-02(16)).

Перед установкой и эксплуатацией МРШ-02(16) необходимо внимательно ознакомиться с настоящим руководством.

Персонал, допущенный к выполнению работ, должен быть аттестованным на знание норм и правил монтажа, наладки, эксплуатационного обслуживания средств охранно-пожарной сигнализации, иметь квалификационную группу по электробезопасности не ниже третьей.

Термины и сокращения:

- ПЦН пульт централизованного наблюдения;
- АРМ автоматизированное рабочее место;
- ОС охранная сигнализация;
- ТС тревожная сигнализация;
- ПС пожарная сигнализация;
- ШС шлейф сигнализации;
- РИП резервируемый источник питания;
- КОП Контроллер охранно-пожарный серии Приток-А-КОП;
- ШР шина расширения.

1 ОСНОВНЫЕ СВЕДЕНИЯ

МРШ-02(16) применяется с приборами серии Приток-А-КОП) (далее по тексту – **КОП**) и предназначен для организации охраны в составе «Автоматизированной системы охранно-пожарной сигнализации Приток-А» ЛИПГ.425618.001 СПИ 010405060714-30/9000-1 путем контроля состояния 16 шлейфов сигнализации. Связь с КОП осуществляется по шине расширения.

Установка, подключение и эксплуатация МРШ-02(16) должны осуществляться в соответствии с настоящим руководством по эксплуатации, а также в соответствии с руководством по эксплуатации на приборы серии Приток-А-КОП (адрес загрузки: http://catalog.sokrat.ru \rightarrow Объектовое оборудование \rightarrow Приборы Приток-А-КОП).

МРШ-02(16) предназначен для установки внутри охраняемого объекта и рассчитан на круглосуточный режим работы при температуре от минус 25 °C до плюс 50 °C.

Конструкция не предусматривает использование МРШ-02(16) в условиях воздействия агрессивных сред, пыли, а также в пожароопасных помещениях.

Питание МРШ-02(16) осуществляется от внешнего резервированного источника питания 10-14 В.

1.1 Краткое описание

На передней панели МРШ-02(16) (см. рисунок 1) расположены светодиоды: «1»- «16», «Работа», «Связь».

Рисунок 1. Передняя панель МРШ-02(16)

Светодиоды **«1»-«16»** отображают состояние шлейфов сигнализации. Светодиод **«СВЯЗЬ»** отображает состояние обмена по линии связи с КОП. Светодиод **«Работа»** отображает состояние электропитания.

Режимы работы индикаторов приведены в таблицах 1.2 – 1.3 (п. 1.3).

КОП рассматривает шлейфы МРШ-02(16) как шлейфы, расположенные на ШР.

В фазе инициализации модулей шины расширения КОП конфигурирует МРШ-02(16), определяя рабочие характеристики каждого шлейфа – тип, параметры.

В рабочем цикле КОП получает информацию о смене состояний шлейфов МРШ-02(16) и обрабатывает ее в соответствии с установленными алгоритмами.

На шине расширения МРШ-02(16) является подчиненным устройством.

1.2 Технические характеристики

Таблица 1.1 Основные технические характеристики

Характеристика	Значение
Количество шлейфов сигнализации	16
Типы шлейфов сигнализации МРШ-02(16)	охранный, охранный (круглосуточный), охранный (контроль линии), охранный (дверь), пожарный, тревожный, патруль
Количество силовых выходов (ключей)	2
Интерфейс шины расширения и линии связи	RS-485
Длина линии ШР не более, м	1000
Скорость обмена по шине расширения, бит\сек	19200
Алгоритм шифрования информационного трафика шины расширения	AES-128
Напряжение питания, В	10 -14
Максимальный потребляемый ток, мА, не более • при питании шлейфов 12 В:	
- номинальный	80
- максимальный	200
 при питании шлейфов 24 В: 	
- номинальный	200
- максимальный	560
Время технической готовности МРШ-02(16), с, не более	4
Диапазон рабочих температур	От минус 25 до плюс 50 °C
Масса, не более, кг	0,23
Габаритные размеры, мм	147x110x39

1.3 Режимы работы индикации

Индикатор «Работа» включен непрерывно зеленым

Таблица 1.2 Состояние индикатора «Связь»

Режим индикатора	Состояние обмена по шине расширения	
Индикатор выключен	Нет обмена с КОП	
Зеленый включен	Прием по шине расширения	
Красный включен	Передача по шине расширения	

Таблица 1.3 Режимы работы индикаторов состояния ШС «1» – «16»

Режим индикатора	Состояние ШС	
Индикатор выключен	Не охраняется, выключен в конфигурации	
Зеленый включен постоянно	ШС взят под охрану	
Зеленый включен 0,25 секунды, выключен 0,25 секунды	Выбран для взятия – сопротивление ШС в норме, режим выключается через 1 мин после выбора ШС	
Красный включен 0,25 секунды, зеленый включен 0,25 секунды	Выбран для взятия – сопротивление ШС не в норме, режим выключается через 1 мин после выбора ШС	
Зеленый включен 0,125 секунды, выключен 0,125 секунды	На ШС выполняется команда «Постановка под охрану после выхода»; сопротивление ШС в норме	
Красный включен 0,125 секунды, зеленый включен 0,125 секунды	На ШС выполняется команда «Постановка под охрану после выхода»; сопротивление ШС не в норме	
Красный включен 0,5 секунды, выключен 0,5 секунды	На ШС зафиксировано состояние «Тревога» или «Пожар»	

` /	
Режим индикатора	Состояние ШС
Красный включен 2 раза по 0,125 секунды, пауза 0,125 секунды, с периодом следования 4 секунды	Срабатывание дымового датчика
Красный включен 0,125 секунды, выключен 4 секунды	Неисправность пожарного ШС, авария ШС, неисправность ШС охранного (контроль линии)
Оранжевый включен постоянно	Выбран для снятия, режим выключается через 1 мин после выбора ШС

Таблица 1.4 Режимы работы выносных оповещателей

Состояние прибора или ШС	Выносной оповещатель «Охрана»	Выносной оповещатель «Пожар»
Тревога на пожарном ШС, состояние прибора «Пожар»	Включен 0,5 сек выключен 0,5 сек	Включен 2 сек, выключен 1 сек
Тревога на охранном ШС, сработки 1 и 2 на охранном (контроль линии) ШС	Включен 0,5 сек, выключен 0,5 сек	Не меняет состояния
Неисправность пожарного ШС	Не меняет состояния	Включен 0,125 сек, выключен 4 сек
Норма на пожарных ШС	Не меняет состояния	Включен
Все охранные ШС в норме и взяты под охрану	Включен	Не меняет состояния
Имеются охранные ШС, не принятые под охрану	Выключен	Не меняет состояния
Срабатывание датчика тревожной сигнализации	Не меняет состояния	Не меняет состояния
Срабатывание датчика отметки Патруля	Включен 0,25 сек выключен 0,25 сек. в течение 2 сек.	Не меняет состояния
Неисправность охранного (контроль линии) ШС	Выключен	Не меняет состояния

1.4 Типы ШС, силовые выходы

В МРШ-02(16) могут быть назначены следующие типы шлейфов:

- охранный («дверь»);
- охранный (ОС);
- охранный (круглосуточный);
- охранный (контроль линии);
- пожарный (ПС);
- тревожный (ТС);
- патруль (ПТ).

Охранный («дверь»)

Тип шлейфа охранный («дверь») устанавливается для ШС, через которые осуществляется выход при постановке под охрану с тактикой «Взятие после выхода». Состояние охранного ШС («дверь») контролируется в том случае, если он взят под охрану. При постановке ШС под охрану прибор проверяет сопротивление нормы ШС в пределах 3 - 7 кОм. При большем расхождении ШС не будет поставлен под охрану. При

изменении сопротивления ШС, находящегося под охраной, он переходит в состояние «Тревога охранного шлейфа».

Охранный (ОС)

Состояние охранного ШС контролируется в том случае, если он взят под охрану. При постановке ШС под охрану прибор проверяет сопротивление нормы ШС в пределах 3 - 7 кОм. При большем расхождении ШС не будет поставлен под охрану. При изменении сопротивления ШС, находящегося под охраной, он переходит в состояние «Тревога охранного шлейфа».

Охранный (круглосуточный)

Состояние ШС типа «Круглосуточный» контролируется постоянно.

ШС типа «Круглосуточный» - охранный ШС с автоматическим перевзятием без права снятия с охраны. Данная тактика может использоваться для охраны витрин, окон и т. д. При постановке ШС под охрану МРШ-02(16) проверяет сопротивление нормы ШС в пределах 3 - 7 кОм. При большем расхождении ШС не будет поставлен под охрану. При изменении сопротивления ШС, находящегося под охраной, он переходит в состояние «Тревога охранного шлейфа».

После нарушения ШС типа «Круглосуточный» МРШ-02(16) через время, установленное параметром «Интервал перевзятия», проверяет исправность ШС. Если сопротивление ШС вернется в состояние нормы, МРШ-02(16) берет его под охрану и передает извещение «Взят» на АРМ ПЦН.

Снятие с охраны ШС с тактикой «Круглосуточный» невозможно.

Охранный (контроль линии)

Состояние охранного ШС (контроль линии) контролируется постоянно в состоянии «Взят» и в состоянии «Снят». Контролируется состояние линии подключения ШС к прибору (состояния: «Норма», «Обрыв», «КЗ»).

При постановке ШС под охрану прибор проверяет сопротивление нормы ШС в пределах 3 - 7 кОм. При большем расхождении ШС не будет поставлен под охрану. При изменении сопротивления ШС, находящегося под охраной, он переходит в состояние «Тревога охранного шлейфа».

После постановки ШС под охрану МРШ-02(16) отслеживает следующие сопротивления ШС:

- «Норма» сопротивление ШС в диапазоне 2 7 кОм;
- «Сработка 1» сопротивление ШС в диапазоне 0,4 2 кОм;
- «Сработка 2» сопротивление ШС в диапазоне 7 15 кОм;
- «Неисправность ШС Обрыв» сопротивление ШС более 16 кОм (обрыв линии подключения ШС к прибору);
- «Неисправность ШС K3» сопротивление ШС менее 400 Ом (короткое замыкание линии подключения ШС к прибору).

После снятия ШС с охраны МРШ-02(16) отслеживает следующие сопротивления ШС:

- «Норма» сопротивление ШС в диапазоне 2 7 кОм;
- «Неисправность ШС Обрыв» сопротивление ШС более 16 кОм (обрыв линии подключения ШС к прибору);
- «Неисправность ШС K3» сопротивление ШС менее 400 Ом (короткое замыкание линии подключения ШС к прибору).

ВНИМАНИЕ! Снятие и постановка охранного ШС (контроль линии) из состояний «Неисправность ШС – Обрыв» и «Неисправность ШС – КЗ» невозможны.

Пожарный (ПС)

Состояние пожарного ШС контролируется постоянно.

После постановки ШС под охрану МРШ-02(16) отслеживает следующие сопротивления ШС:

- «Норма» сопротивление ШС в диапазоне 2 7 кОм;
- «Дым» сопротивление ШС в диапазоне 0,4 2 кОм;
- «Пожар» сопротивление ШС в диапазоне 7 15 кОм
- «Неисправность ШС Обрыв» сопротивление ШС более 16 кОм;
- «Неисправность ШС K3» сопротивление ШС менее 400 Ом.

После нарушения пожарного ШС (пожар или неисправность) МРШ-02(16) через время, установленное параметром «Интервал перевзятия», проверяет сопротивление ШС. Если сопротивление ШС вернется в состояние нормы, МРШ-02(16) берет его под охрану и передает извещение «Взят» на АРМ ПЦН.

Тревожный (ТС)

Состояние тревожного ШС контролируется постоянно.

При постановке ШС под охрану прибор проверяет сопротивление нормы ШС в пределах 3 - 7 кОм. При большем расхождении ШС не будет поставлен под охрану. При изменении сопротивления ШС, находящегося под охраной, он переходит в состояние «Тревога тревожного шлейфа».

При нарушении ШС данного типа не происходит срабатывания сирены и выносной оповещатель «Охрана» не меняет своего состояния.

После нарушения шлейфа тревожной сигнализации МРШ-02(16) через время, установленное параметром «Интервал перевзятия», проверяет исправность ШС. Если сопротивление ШС вернется в состояние нормы, МРШ-02(16) берет его под охрану и передает извещение «Взят ТС» на АРМ ПЦН.

Примечание - Шлейфы ОС (круглосуточный), ТС и ПС нельзя снять с охраны по команде с АРМ ПЦН. При выполнении команды «Снять», поданной на такой ШС, прибор ответит извещением «Не снят». ШС данных типов нельзя выбрать при снятии с клавиатуры.

Патруль (ПТ)

Состояние шлейфа ПТ контролируется постоянно.

МРШ-02(16) отслеживает сопротивление нормы ШС более 20 кОм. При обнаружении короткого замыкания ШС на землю МРШ-02(16) переходит в состояние «Патруль», при восстановлении ШС — «Шлейф «Патруль» в норме». При нарушении ШС данного типа не происходит срабатывания сирены, а выносной оповещатель «Охрана» на 2 секунды переходит в прерывистый режим (включен 0,25 секунды, выключен 0,25 секунды).

Возможные тактики работы силовых выходов:

- «Выносной оповещатель «Охрана» включается при взятии под охрану всех охранных ШС, дальнейшее поведение зависит от параметра «Включить выносной оповещатель «Охрана» (сек)»;
- «Выносной оповещатель «Пожар» включен в нормальном состоянии пожарного ШС, мигает при тревоге или неисправности;

1.5 Работа с КОП

К КОП-02 может быть подключено до 8 модулей МРШ-02(16) с общим количеством шлейфов не более 124.

К КОП-01 и КОП-03 может быть подключено до 30 модулей МРШ-02(16) с общим количеством шлейфов не более 112.

Конфигурация шлейфов MPШ-02(16) определяется в программе Uniprog, которая содержит следующие данные:

- логический адрес МРШ-02(16) на шине расширения;

- тип шлейфа и его параметры;
- отображение номеров шлейфов МРШ-02(16) на заданный диапазон внешних шлейфов КОП.

В фазе инициализации МРШ-02(16) КОП выполняет следующий алгоритм:

- проверяет тип МРШ-02(16);
- записывает в МРШ-02(16) параметры конфигурации шлейфов;
- присваивает МРШ-02(16) логический адрес и «подключает» шлейфы данного МРШ-02(16) к своему диапазону внешних шлейфов.

В рабочем цикле КОП получает информацию о смене состояний шлейфов МРШ-02(16) и обрабатывает ее в соответствии с установленными алгоритмами.

Если поступает команда на шлейф, номер которого принадлежит области внешний шлейфов, то КОП транслирует ее на МРШ-02(16), которому принадлежит шлейф из этого диапазона.

2 МОНТАЖ, ПОДКЛЮЧЕНИЕ И ПРОВЕРКА РАБОТОСПОСОБНОСТИ

Порядок ввода МРШ-02(16) в эксплуатацию следующий:

- Конфигурация МРШ-02(16).
- Установка МРШ-02(16) на месте эксплуатации.
- Проверка работоспособности.

2.1 Конфигурация

Конфигурационные параметры МРШ-02(16) хранятся в энергонезависимой памяти КОП. В фазе инициализации модулей шины расширения КОП переписывает эти параметры в энергонезависимую память МРШ-02(16).

Конфигурационные параметры MPШ-02(16) заносятся в таблицу конфигурации КОП с помощью программы «Конфигуратор параметров приборов серии Приток-А» (файл Uniprog.exe), входящую в комплект ПО «ПРИТОК-А-3.7», которую можно загрузить с сайта www.sokrat.ru \rightarrow Загрузка ПО \rightarrow Утилиты \rightarrow Скачать конфигуратор параметров Uniprog.

Для конфигурирования КОП выполните следующие действия:

1) Подключите КОП к компьютеру с помощью стандартного кабеля miniUSB и запустите программу «Конфигуратор параметров приборов серии Приток-А». В левом верхнем углу окна программы нажмите кнопку «Считать из прибора». В появившемся окне «Подключение» выберите из списка «ПРИТОК-А-КОП-01,-02,-03, РКС-02,-04,-05, ПП-04» и нажмите кнопку «Подключиться» (см. рисунок 2). Дождитесь завершения чтения параметров от КОП.

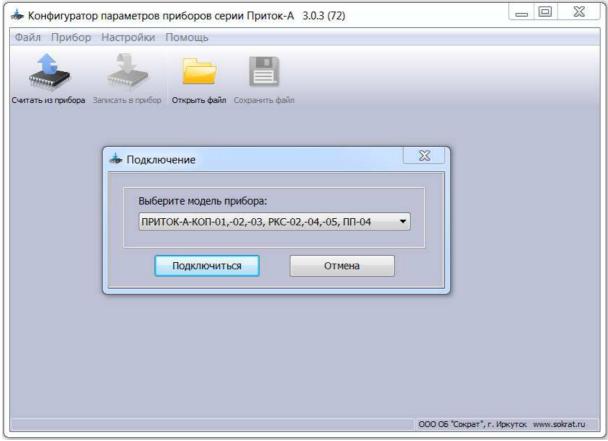


Рисунок 2

2) В окне программы перейдите во вкладку **«Конфигурация»**. Появится окно, содержащее сводную таблицу всех параметров КОП.

Для добавления МРШ-02(16) в конфигурацию КОП выберите из списка «Шина расширения RS485», нажмите кнопку « («Добавить модуль к текущему узлу») → «Добавить элемент "Расширитель шлейфов"». В появившемся окне «Выбор прибора»

выберите из списка «МРШ-02(16/OC)» или «МРШ-02(16/OC+КЛ)», нажмите «ОК» (см. рисунок 3).

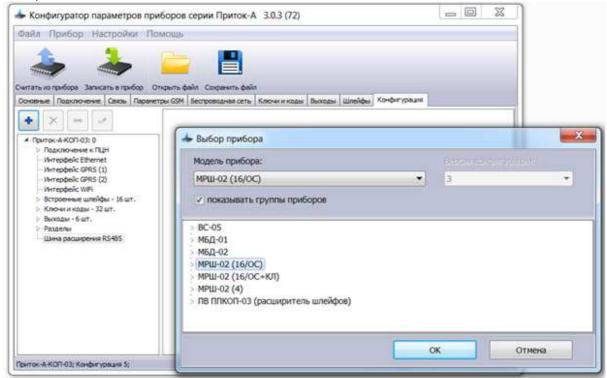
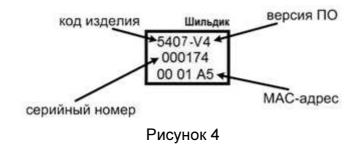



Рисунок 3

Заполните поля таблицы параметров добавленного МРШ-02(16) следующим образом (см. рисунок 5):

- поле **«Наименование прибора»** поле для ввода пояснительного текста, например, с адресом установки прибора. Поддерживаются латинские, кириллические буквы, цифры, пробелы и специальные символы (! ? @ # & * () ; :).
 - поле «Модуль» выберите значение «Подключен»;
- поле **«МАС адрес»** содержит уникальный трехбайтовый код, который присваивается МРШ-02(16) на этапе производства. Значение МАС-адреса указано на шильдике, который приклеен на лицевой стороне платы (см. рисунок 4)

Поле «Логический адрес» заполняется программой автоматически.

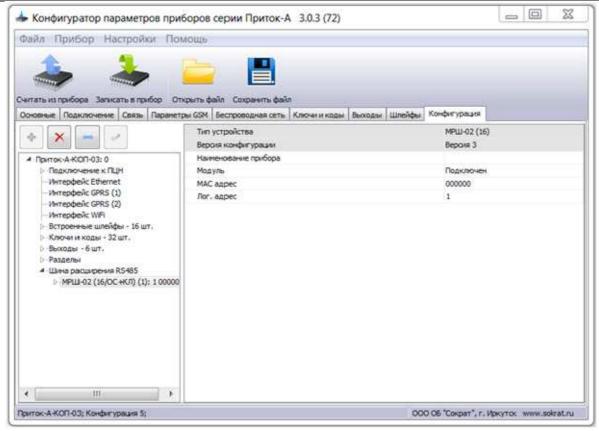


Рисунок 5

Раскройте список шлейфов («1» - «16») двойным кликом курсора по выбранному МРШ-02(16) для редактирования настроек ШС.

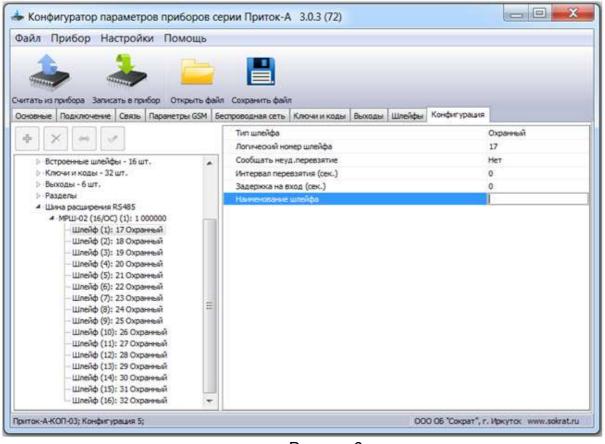


Рисунок 6

В окне редактирования появятся параметры, присвоенные выбранному шлейфу по умолчанию. Если необходимо, скорректируйте поля:

- «**Тип шлейфа»** в выпадающем списке выберите необходимое значение типа шлейфа.
- **«Логический номер шлейфа»** уникальный номер шлейфа, присваивается программой автоматически, может принимать значения от 1 до 128.
- «Сообщать неуд. перевзятие» при выбранном значении «Да» в случае если не удалось перевзять шлейф, прибор сформирует сообщение «Тревога». Значение по умолчанию «Нет».
- «Интервал перевзятия, сек» указывает, через сколько секунд выполнить попытку перевзятия нарушенного пожарного, тревожного или охранного шлейфа.
- **«Задержка на вход, сек»** задержка (в секундах) на включение сирены после перехода шлейфа в состояние «Тревога». Диапазон значений от 0 до 255. Значение по умолчанию 0.
 - «Наименование шлейфа».
- 3) Для сохранения параметров МРШ-02(16) в КОП нажмите кнопку **«Записать в прибор»**. По завершению записи в появившемся окне **«Сообщение»** нажмите кнопку **«ОК»**.

2.2 Установка на месте эксплуатации

МРШ-02(16) устанавливается внутри охраняемого помещения в месте, защищенном от доступа посторонних лиц, воздействия атмосферных осадков, капель и брызг, механических повреждений, химически активных паров и газов, разрушающих металлы и изоляцию.

Запрещается производить установку, монтаж и техническое обслуживание МРШ-02(16) при включенном питании.

При установке и эксплуатации МРШ-02(16) следует руководствоваться «Правилами устройства электроустановок», «Правилами техники безопасности при эксплуатации электроустановок потребителей», «Правилами технической эксплуатации электроустановок потребителей».

Схемы подключения МРШ-02(16) к КОП приведены в Приложении.

Рекомендуемый порядок монтажа следующий:

- Снимите крышку МРШ-02(16), надавив на язычок защелки (находится на боковой грани корпуса). Аккуратно отогните фиксирующий крючок и вытащите плату МРШ-02(16).
- Закрепите донышко корпуса к поверхности стены двумя саморезами (входят в комплект поставки) в удобном для использования месте.
 - Установите плату на место.
- В соответствии с Приложением подключите к МРШ-02(16) источник питания (-РИП+), линии связи интерфейсов RS-485 с КОП (A, B).

Линии связи интерфейсов RS-485 должна быть выполнена витой парой.

МРШ-02(16) должен иметь гальваническую связь по проводу «-РИП» с проводом «ОБЩ» или «-РИП» контроллера КОП для выравнивания их потенциалов, если используются разные РИПы.

Для цепи выравнивания потенциалов можно использовать свободную пару кабеля линии связи RS-485. Длина линии связи не должна превышать 1000 м и на ней не должны присутствовать какие-либо ответвления (топология типа шина).

Если МРШ-02(16) является последним на шине RS-485, то необходимо установить перемычку XS6.

• Установите крышку на место.

2.3 Проверка работоспособности

Проверка работоспособности производится в составе АРМ ДПЦО Приток 3.7 согласно пунктам «Подготовка пультового оборудования» и «Установка на месте эксплуатации» руководства по эксплуатации на соответствующий КОП, совместно с которым применяется МРШ-02(16) в программе «АРМ Конфигуратор».

Внимание! Выполняя пункт «Подготовка пультового оборудования» руководства по эксплуатации на КОП, определите типы шлейфов МРШ-02(16) (см. рисунок 7).

Для этого выполните следующие действия:

- выберите курсором конфигурируемый шлейф Модуля шлейфов;
- нажмите кнопку «Редактировать»;
- в окне «**Объект»** из выпадающего списка «**Тип шлейфа»** выберите необходимое значение (*OC*, *ПC*, *TC*, *Патруль*, *Дверь*, *OC+КЛ*, *Круглосуточный* или *Hem*). Выбранный тип шлейфа должен совпадать с тем, что определен при конфигурировании MPШ-02(16) (смотри п. 2.1);
 - наименование шлейфа можно изменить в поле «Наименование»;
 - нажмите кнопку «ОК»;
 - повторите это для всех сконфигурированных в МРШ-02(16) шлейфов.

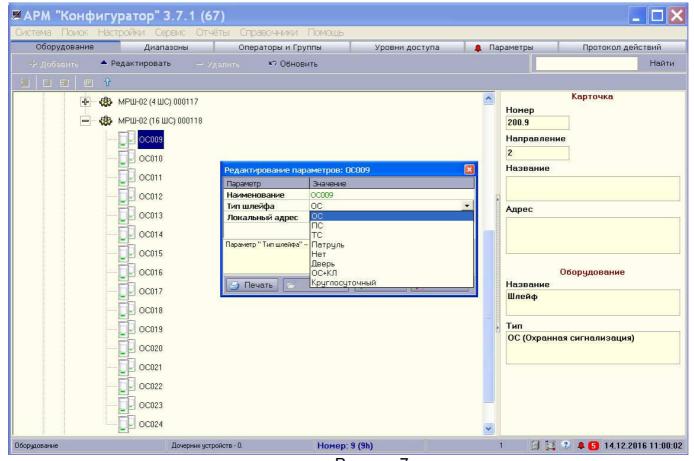


Рисунок 7

ПРИЛОЖЕНИЕ. СХЕМА ПОДКЛЮЧЕНИЯ

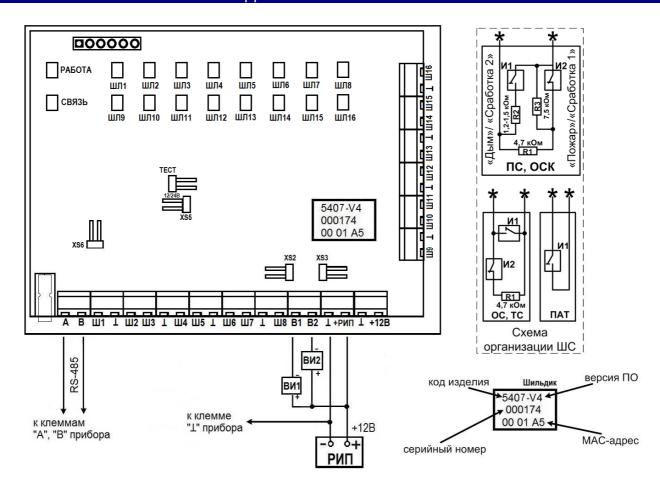


Рисунок 1 – Схема подключения МРШ-02(16)

★ – шлейф подключается к клеммам «Ш» и «Т»;

ОС – тип шлейфа «Охранный»;

ОСК – тип шлейфа «Охранный с контролем линии»;

ПС – тип шлейфа «Пожарный»;

TC – тип шлейфа «Тревожный»;

ПАТ – тип шлейфа «Патруль»;

Ш1 - Ш16 – охранные шлейфы типа ОС, ТС, ПС, ОСК, ПАТ;

И1 – извещатели с нормально разомкнутыми контактами;

И2 – извещатели с нормально замкнутыми контактами;

R1 – резистор номиналом 4,7 кОм;

R2 – резистор номиналом 1,2 - 1,5 кОм;

R3 – резистор номиналом 7,5 кОм;

ВИ1 – внешний световой оповещатель «Пожар». Если ВИ1 - оповещатель типа «Маяк-12-С», перемычка XS2 должна быть установлена. Если ВИ1 - светодиод, перемычку XS2 необходимо снять.

ВИ2 – внешний световой оповещатель «Охрана». Если ВИ2 - оповещатель типа «Маяк-12-С», перемычка XS3 должна быть установлена. Если ВИ2 - светодиод, перемычку XS3 необходимо снять.

XS2 – перемычка не установлена – выходной ключ подключен к В1 через резистор 1,5 кОМ, перемычка установлена – выходной ключ подключен к В1 напрямую;

XS3 – перемычка не установлена – выходной ключ подключен к B2 через резистор 1,5 кОМ, перемычка установлена – выходной ключ подключен к B2 напрямую;

XS5 – выбор напряжения питания шлейфов (установлена – напряжение на шлейфах 24 В, не установлена — напряжение 12 В);

XS6 – подключает терминальный резистор 120 Ом на шину RS-485 (A-B);

Перемычка «TECT» не устанавливается.

Клеммная колодка «+12В» подключена через предохранитель 500 мА к колодке «+РИП».

Предприятие-изготовитель

Россия, 664007, г. Иркутск, пер. Волконского, дом 2, ООО Охранное бюро "СОКРАТ" Тел/факс: (395-2)20-66-61, 20-66-62, 20-66-63, 20-64-77 E-mail: sokrat@sokrat.ru, http://www.sokrat.ru

